Bicycle Setup and Prosthesis Design for Cyclists with Amputation

Lee Childers PhD MSPO certified prosthetist
lchilders@alasu.com

Introduction

- Overview
- Cycling goals
- Riding the bike
- Simulate amputee cycling
- Bike setup
- Prosthesis design recommendations

Cycling goals

- Recreational
 - Use regular prosthesis
- Competitive
 - Cycling specific prosthesis

Riding the Bike

- Confidence
- Getting on/off
- Starting/stopping

Simulation

- Use a prosthesis
 - Transtibial
 - Most transfemoral
- Do not use a prosthesis
 - Extremely short transfemoral
 - Hip Disarticulation

• Use regular prosthesis
• Cycling specific prosthesis

• Recreational
• Competitive

• Do not use a prosthesis
• Use a prosthesis

• Confidence
• Getting on/off
• Starting/stopping
Riding the Bike

- Sound limb
 - Last On
 - First Off
- Start slow
 - Off/on drills
 - Start/stop drills

One Legged Cycling

- Start with fixed gear
- Learn the bike
- Graduate to geared bike

Bike Setup

- Work with a Bike Fitter
 - Trek
 - Serotta
 - Specialized

Bike Setup

- Saddle Height = Greater Trochanter to Floor – 1 to 2 cm
- Knee should be about 150 degrees at the bottom of the pedal stroke.

Attaching the shoe to the pedal

- BMX Pedal
- Velcro
- “Clipless” pedal systems

Attaching the shoe to the pedal

- “Clipless” pedal systems
Using “Clipless” Pedals

Heel/Crank Clearance

Asymmetrical Crank arms

- “Corrects” kinematic asymmetries
- Does NOT change kinetic asymmetries
- Shifts joint work from knee to hip

Asymmetrical Crank arms

- “Corrects” kinematic asymmetries
- Does NOT change kinetic asymmetries
- Shifts joint work from knee to hip

Cycling Prosthesis Design

- Prosthetic foot
 - STIFF AS POSSIBLE

Childers W.L. Motor control in persons with a transtibial amputation during cycling. School of Applied Physiology, Georgia Institute of Technology, 2011.

Childers W.L. Prosthetic foot stiffness in persons with a transtibial amputation during cycling. School of Applied Physiology, Georgia Institute of Technology, 2011.
TT Cycling Prosthesis Design

• Alignment
 – A-P
 • Start with cleat at 1st metatarsal head
 • Moving cleat posteriorly
 – Lengthen prosthesis
 – ↑ Hip work
 – ↓ Knee work
 – ↑ Hamstring use

TT Cycling Prosthesis Design

• Alignment
 – M-L
 • Knee motion should be a straight line
 • Knee motion should match sound limb

What is Optimal?

TT Cycling Prosthesis Design

• Trimlines
 – Posterior wall
 • Careful how much you cut down!
 – Medial/Lateral
 • Extend just proximal to apex of femur epicondyle

Cycling Prosthesis Design

• Suspension
 – Pin/lanyard
 – Suction (TT)
 • Seal in liner
 • Valve that allows user to bleed off suction

TF Cycling Prosthesis Design

• Knee joint
 – No dampening
 – Single axis
 – Knee flexion stop
 – Extension assist?
 – Location?
TF Cycling Prosthesis Design

One Legged Cycling

Allison Jones, US Paralympian

Summary

- Cycling goals
- Simulate amputee cycling
 - TRY IT BEFORE YOU TEACH IT!
- Bike setup
 - Professional Bike Fitter
- Riding the bike
 - Rider Confidence
 - Starting/stopping